

Le pratiche agronomiche di Carbon Farming

Stefano Monaco^a, Roberta Farina^b, Maria Fantappiè^b, Lorenzo D'Avino^b

^aCREA-IT, Ingegneria e Trasformazioni Agroalimentari

^bCREA-AA, Agricoltura e Ambiente

Firenze, Accademia dei Georgofili 5 Dicembre 2024

Argomenti trattati

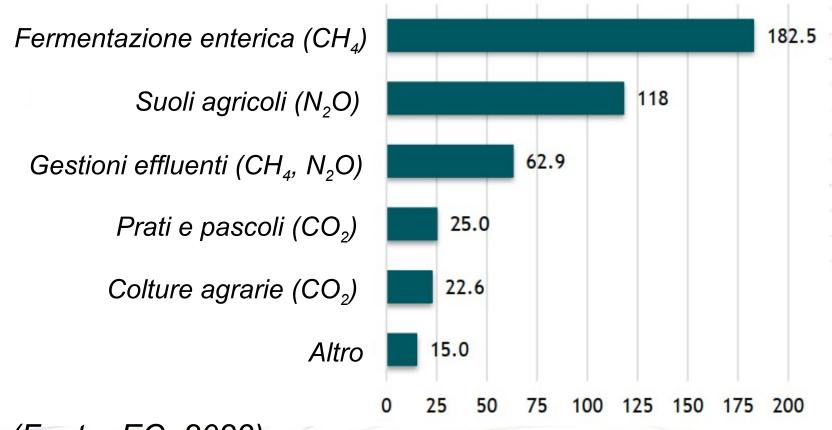
- L'agricoltura, i cambiamenti climatici e le politiche di mitigazione e adattamento
- Le pratiche agronomiche di carbon farming e i principali aspetti legati alla loro possibile adozione per la mitigazione dei cambiamenti climatici

- Cambiamenti climatici causati dall'emissione antropica di gas serra:
 - CO₂, CH₄, N₂O
 - \rightarrow GWP: CO₂(1), CH₄(27), N₂O (273) \rightarrow CO₂-eq
- AFOLU (Agriculture, Forestry and Other Land Use)
 - attività agricole + LULUCF
 - → emissioni + assorbimenti di carbonio
- Sistema agroalimentare:
 - AFOLU + emissioni energia, industria, rifiuti

• Emissioni del settore agricolo UE-27 (EEA, 2021)

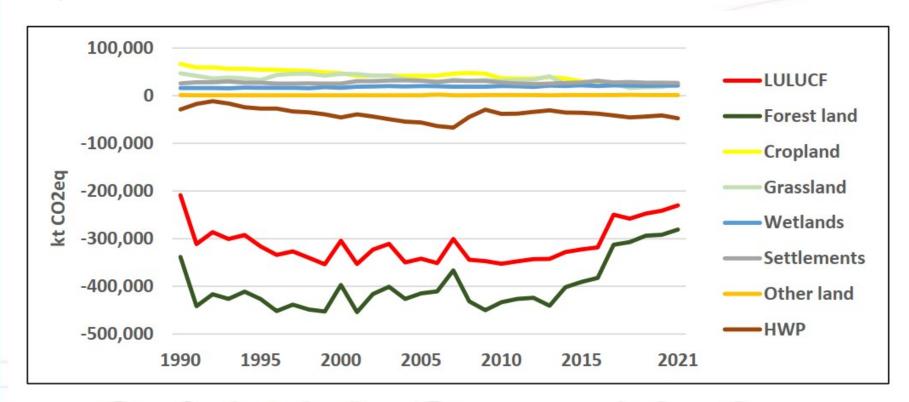
+378 Mt CO₂-eq/anno (↓ rispetto al 1990)

11,4% del totale GhG della UE

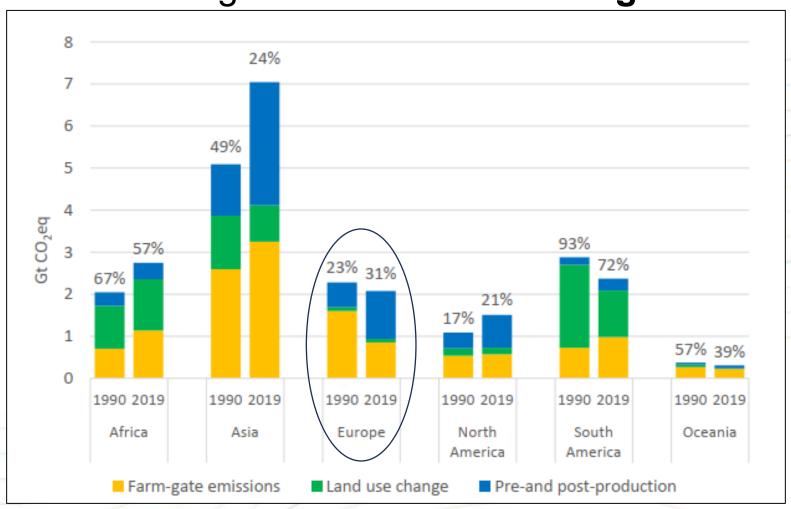

(CH₄: 7,0%; N₂O: 4,1%; CO₂: 0,30 %) del totale GhG

 Assorbimenti di carbonio del settore LULUCF (Land use, Land-use change, and Forestry) UE-27

-230 Mt CO₂-eq/anno (个 rispetto al 1990)


Emissioni di gas serra dal settore agricolo per categoria nella UE in Mt CO₂ eq/anno

(Fonte: EC, 2023)


Settore LULUCF: Emissioni nette di gas serra nella UE-27

(Fonte: EEA, 2023)

Emissioni di gas serra del sistema agroalimentare

(Fonte: FAOSTAT, 2023)

- UNFCCC «Accordo di Parigi» → obiettivo 1.5°C
- EU «Climate Law», Regolamento «LULUCF»
- proposta Reg. «CRCF (Carbon Removals, Carbon Farming)»
 - «...istituisce un quadro di certificazione dell'Unione per gli assorbimenti di carbonio e delle riduzioni delle emissioni dal suolo»
 - «...realizzazione, da parte di gestori o gruppi di gestori, di assorbimenti permanenti di carbonio, carbon farming e stoccaggio del carbonio nei prodotti»

Carbon farming: pratiche o processi, svolti su un periodo di attività di almeno cinque anni (stoccaggio temporaneo)

Proposta di Regolamento UE sui CRCF

Quali "attività" sono ammissibili come pratiche di Carbon farming?

- Reg. non contiene una lista di pratiche
- Criteri "Qu.a.l.ity":
 - Quantificazione
 - Addizionalità
 - Stoccaggio, monitoraggio e responsabilità
 - Sostenibilità (co-benefici)
- Importanza approcci metodologici per la quantificazione e il monitoraggio dello stoccaggio (Expert Group)

Come facciamo ad identificare e valutare le pratiche di carbon farming?

- Numerosi report istituzionali:
 - Identificazione pratiche e potenziali di mitigazione, anche per aree geografiche
 - Sistemi e metodologie di certificazione
 - Aspetti economici e politico-economici
- Letteratura scientifica in diversi ambiti di ricerca

Documentazione prodotta dall''Expert Group on Carbon removals' della EC:

https://climate.ec.europa.eu

Categoria	Pratiche agricole
Uso del suolo (stoccaggio carbonio)	Prato permanente e pascoli: conversione, mantenimento Foreste: nuovi impianti, mantenimento, gestione Sistemi agroforestali: nuovi impianti Zone umide e torbiere: conservazione e ripristino
Produzioni agricole (stoccaggio carbonio)	Lavorazioni (no-tillage, minima lavorazione) Gestione residui (no asportazione, no bruciatura) Colture di copertura (Cover crops e inerbimenti)
Produzioni agricole (riduzione emissioni)	Fertilizzazione (Piani di concimazione, prodotti fertilizzanti, agricoltura di precisione, colture azotofissatrici) Riduzione emissioni CH ₄ dalla risaia (AWD, varietà)
Produzioni zootecniche (riduzione	Alimentazione Miglioramento genetico Gestione effluenti

Esempi di pratiche:

- 1. Agroforestazione nuovi impianti
- 2. Pratiche per l'incremento della s.o. del suolo
- 3. Gestione della fertilizzazione azotata

Criteri di valutazione:

- Meccanismo di mitigazione
- Potenziale di mitigazione
- Emissioni GhG associate all'adozione della pratica CF
- Approcci metodologici per la quantificazione e il monitoraggio degli stoccaggi
- Co-benefici agro-ambientali

- Diversi sistemi agroforestali/consociazioni: silvopastorale, silvoarabile, fruttiferi
- Nuovi impianti su terreni agricoli o elementi del paesaggio
- Stoccaggio in diversi pool di carbonio (legno, SOC)
- Aspetti da considerare: specie, densità, profondità accumulo SOC, quantità/qualità delle produzioni, effetto dei cambiamenti climatici

1. Agroforestazione

Meccanismo di mitigazione

• Assorbimento e stoccaggio in diversi pool di carbonio

Stima del potenziale di mitigazione

- 0,3-7 tC/ha/anno nella biomassa legnosa (EURAF, 2020)
- **SOC**: +43,5 (0-20cm)% in regioni Med. (Guerrero et al., 2024); 0.04-0.24 tC/ha/anno (Martineau et al., 2016)
- Italia: Potenziale di mitigazione SOC: 21-120 kt CO₂e/anno (Martineau et al., 2016)

Emissioni GhG associate

- = ↓ emissioni GhG associate,
- ↑ ILUC (riduzione produzioni agricole)

Quantificazione e monitoraggio degli stoccaggi

Misure in campo, Modelli forestali e colturali, Remote sensing

Co-benefits agroambientali

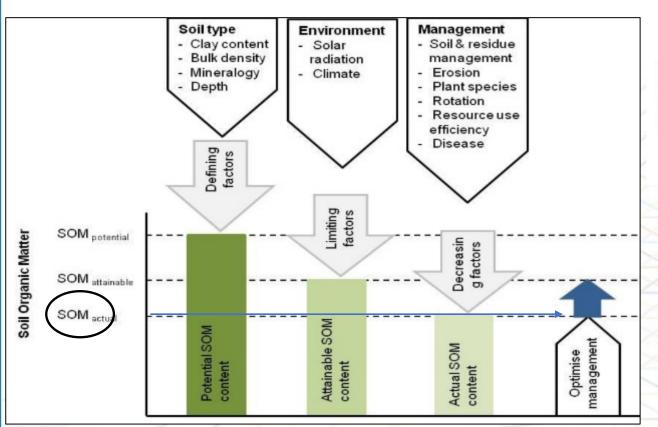
- ↑ biodiversità
- ↓ erosione e lisciviazione
- adattamento ai cambiamenti climatici

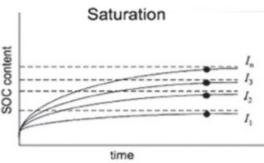
2. Incremento della sostanza organica del suolo

- Colture di copertura
- Gestione dei residui colturali
- No-tillage o minima lavorazione

SOC dipende da:

- Potenziale di accumulo di carbonio
- Input di carbonio
- Tasso di decomposizione dei pool di carbonio
- Suolo tessitura (SOC iniziale)
- Clima temp., prec. (irrigazioni)
- Vegetazione (uso del suolo, rotazione)
- Gestione agronomica (residui, lavorazioni)





2. Incremento della sostanza organica del suolo

Stima mediante modelli di simulazione della s.o. del suolo (es. RothC, DNDC, DayCent)

Fonte: Batjes et al., 2023 da Ingram and Fernandes, 2001

2. Incremento s.o. del suolo

Meccanismo di mitigazione

Assorbimento e stoccaggio di carbonio nel suolo

Stima del potenziale di mitigazione

- Covercrop: +0.21 tC/ha/anno (+1.11 tC/ha totale) f(periodo, C:N, specie, metodo di terminazione) (Guerrero et al., 2024)
- Residui: + 11 (+17, +57)% di SOC (Guerrero et al., 2024)
- Lavorazioni: No-tillage: 1.1 t CO₂e/ha (Martineau et al., 2016)

Emissioni GhG associate

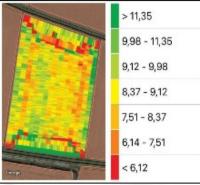
- Covercrop: ↓N₂O (colture non leguminose)
- Residui: ↑ N₂O seminativi; ↑CH₄ riso
- Lavorazioni: ↓ carburante; ↑ ILUC (↑ diserbanti)

Quantificazione e monitoraggio degli stoccaggi

 Misure in campo, Modelli colturali, Remote sensing

Co-benefits

- ↑ Fertilità del suolo,
- ↑ biodiversità
- ↓ erosione e lisciviazione
- ↑ umidità del suolo (in ambienti semi-aridi)


3. Gestione della fertilizzazione azotata

- Bilancio dei nutrienti e piani di fertilizzazione
- Prodotti fertilizzanti e biostimolanti
- Agricoltura di precisione

- → Riduzione perdite di azoto
- Bilancio azotato per individuare surplus
- Ottimizzazione della fertilizzazione (coltura, prodotti, frazionamento)
- Urea ricoperta, inibitori della nitrificazione
- Tecniche innovative (rateo variabile, monitoraggio vegetativo, fertirrigazione)

3. Gestione della fertilizzazione

Meccanismo di mitigazione

- Riduzione delle emissioni di gas serra dirette (e indirette)
- Possibilità di associazione ad altre pratiche di CF

Stima del potenziale di mitigazione

- Piani di concimazione: 2-5% delle emissioni di N₂O
- Inibitori della nitrificazione: 60% delle emissioni di N₂O
- Italia: Potenziale di mitigazione > 7 Mt CO2 eq/anno (Martineau et al., 2016)
- AdP: 20% fertilizzanti ↓N₂O (Cutini et al., 2021)

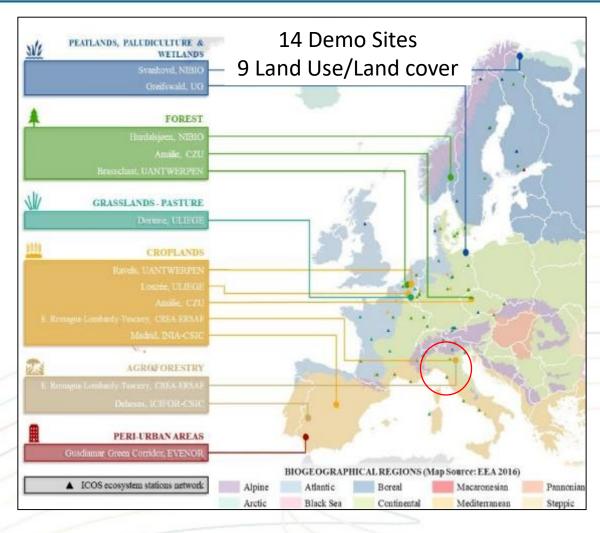
Emissioni GhG associate

• Fertilizzazione di precisione: ↓ carburanti

Quantificazione e monitoraggio della riduzione

- · Audit e verifica aziendale
- Emissions Factors e modelli di simulazione

Co-benefits

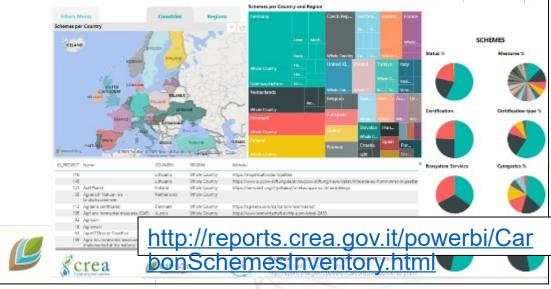

- ↓ perdite di nutrienti
- ↓ Eutrofizzazione
- ↓ emissioni di NH₃

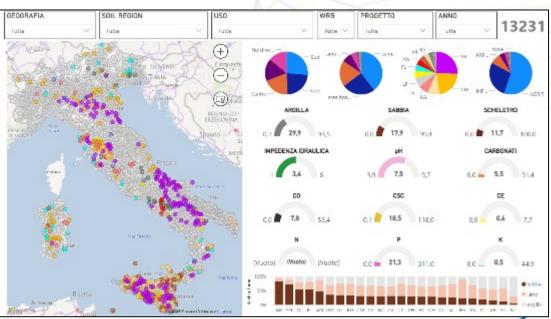
Progetti di ricerca in corso

Applicazione di metodi di quantificazione basati su modelli di simulazione applicata a diverse scale (approccio tier 3)
Sviluppo del sistema MRV (Monitoraggio, Reportistica e Verifica) secondo criteri di trasparenza, robustezza ed economicità

- Valutazione dell'effetto dei cambiamenti climatici
 - Analisi socio-economiche, identificazione delle barriere

Strumenti informativi e di supporto


Web application:
inventario degli schemi
di Carbon Farming
presenti in Europa e nel
mondo



Stime dei potenziali di assorbimento di carbonio nei suoli europei

Pedoteca web del CREA

https://infosuoli.crea.gov.it/

Conclusioni

- Opportunità di sviluppo e ammodernamento per le filiere agricole (assistenza tecnica, sistemi di certificazioni, innovazioni tecniche e gestionali) e di decarbonizzazione dei sistemi agroalimentari
- Miglioramento delle politiche agricole grazie all'introduzione di meccanismi «results-based» (quantificazione dell'effetto) e il loro collegamento al sistema degli inventari nazionali
- Benefici agroambientali dipenderanno da:
 - adesione dei produttori e diffusione delle diverse CF
 - corretta quantificazione, a diversa scala, dell'impatto delle pratiche di CF ed efficacia monitoraggio
 - limitazione del rischio di delocalizzazione delle emissioni

Ringraziamenti

Ilaria Falconi - CREA-PB, Roma Irene Criscuoli - CREA-PB, Roma Pier Mario Chiarabaglio - CREA-FL, Casale M.to Sara Bergante - CREA-FL, Casale M.to Maurizio Cutini – CREA-IT, Treviglio Laura Bardi – CREA-IT, Torino

GRAZIE PER L'ATTENZIONE

Contatti: stefano.monaco@crea.gov.it